
CHAPTER 8

THEOREM OF MINIMUM POTENTIAL ENERGY, HAMILTON’S PRINCIPLE

AND THEIR APPLICATIONS

8.1  Introduction

 Many structures involve complicated shapes and numerous or unusual loads for 

which solutions of the governing differential equations and/or the boundary conditions

are difficult or impossible.  For instance, a rectangular plate with a hole somewhere, or a

plate with discontinuous boundary conditions poses a major difficulty in finding an

analytical solution.

 For preliminary design and analysis one needs simplified, easy to use analyses

analogous to those that have been presented earlier.  However, for final design, quite

often transverse shear deformation and thermal effects must be included.  Thermal

effects have been described in Chapter 4.  Analytically they cause considerable difficulty,

because with their inclusion few boundary conditions are homogeneous, hence separation

of variables, used throughout the plate solutions to this point, cannot be utilized in a

straightforward manner. Only through the laborious process of transformation of 

variables can the procedures discussed herein be used [1.1].  Therefore, energy principles

are much more convenient for use in design and analyses of plate structures when

thermal effects are present.

 In solving plate problems it is seen that in order to obtain an analytical solution

one must solve the differential equations and satisfy the boundary conditions; if that 

cannot be accomplished, there is no solution.  With energy methods, one can always

obtain a good approximate solution, no matter what the structural complexities, the loads

or the boundary condition complications may be, using a little ingenuity.

 In structural mechanics three energy principles are used: Minimum Potential

Energy, Minimum Complementary Energy and Reissner’s Variational Theorem [8.1].  

The first two are discussed at length in Sokolnikoff [1.1] and many other references.  The 

Reissner Variational Theorem, likewise, is widely referenced.  In solid mechanics, 

Minimum Complementary Energy is rarely used, because it requires assuming functions 

that insure that the stresses satisfy boundary conditions and equilibrium.  It is usually far 

easier to make assumptions about functions that can represent displacements.

Minimum Potential Energy is widely used in solutions to problems involving 

plate structures.  In fact, the more complicated the loading, the more complicated the 

geometry and the more complicated the boundary conditions (e.g., discontinuous or 

concentrated boundary conditions), the more desirable it is to use Minimum Potential 

Energy to obtain an approximate solution, compared to attempting to solve the governing 

differential equations and to satisfy the boundary conditions exactly.

In addition, in many cases energy principles can be useful for eigenvalue 

problems such as in the buckling and vibration problems as shall be shown. 
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There are numerous books dealing with energy theorems and variational methods.  

One of the more recent is that by Mura and Koya [8.2].

8.2  Theorem of Minimum Potential Energy

For any generalized elastic body, the potential energy of that body can be written

as follows: 
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One sees that the first term on the right-hand side of Equation (8.1) is the strain

energy of the elastic body.  The second and third terms are the work done by the surface 

tractions; and the body forces, respectively.  The Theorem of Minimum Potential Energy

can be stated as described in [1.1]: “Of all the displacements satisfying compatibility and 

the prescribed boundary conditions, those that satisfy the equilibrium equations make the

potential energy a minimum.” 

Mathematically, the operation is simply stated as,

0VVV                                                         (8.2)

The lowercase delta is a mathematical operation known as a variation.  

Operationally, it is analogous to partial differentiation.  To employ variational operations

in structural mechanics, only the following three operations are usually needed (where y

is any dependent variable):
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 In Equation (8.1) the strain energy density function, W, is defined as follows in aWW

Cartesian coordinate frame: 
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 To utilize the Theorem of Minimum Potential Energy, the stress-strain relations 

for the elastic body are employed to change the stresses in Equation (8.4) to strains, and 

the strain-displacement relations are employed to change all strains to displacements.  

Thus, it is necessary for the analyst to select the proper stress-strain relations and strain-

displacement relations for the problem being solved. 

 Although this text is dedicated to plate and panel structures, it is best to introduce 

the subject using isotropic monocoque beams, a much simpler structural component, to 

first illustrate the energy principles. 

8.3  Analysis of a Beam In Bending Using the Theorem of Minimum Potential 

       Energy

 As the simplest example of the use of Minimum Potential Energy, consider a 

beam in bending, shown in Figure 8.1.  In this section, Minimum Potential Energy 

methods are used to show that if one makes beam assumptions, one obtains the beam 

equation.  However, the most useful employment of the Minimum Potential Energy 

Theorem is through making assumptions for the dependent variables (the deflection) and 

using the Theorem to obtain approximate solutions, as will be illustrated later. 

 From Figure 8.1 it is seen that the beam is of length L, in the x-direction, width b

and height h.  It is subjected to a lateral distributed load, q(x(( ) in the positive z-direction,

in units of force per unit length.  The modulus of elasticity of the isotropic beam material 

is E, and the stress-strain relation is simply 

xx E                                                       (8.5) 

Figure 8.1.  Beam in bending
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The corresponding strain-displacement relation for a beam in bending only is, from

(1.16), (2.1) and (2.27),
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since in the bending of beams, )d/d( xddwzu only.

 Looking at Equations (8.4) through (8.6) and remembering that in elementary 

beam theory 
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Therefore, the strain energy, U, which is the volume integral of the strain energy densityUU

function, W, is WW
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where, 123bh , the flexural stiffness for a beam of rectangular cross-section.

 Similarly, from the surface traction work term in Equation (8.1) it is seen that 
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Following Equation (8.2) and remembering Equation (6.3) then
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 The variation can be included under the integral, because the order of variation

and integration can be interchanged.  Also, there is no variation of E, I or q(x(( ) because 

they are all specified quantities. 

 Integrating by parts the first term on the right-hand side of Equation (8.10).
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Substituting Equation (8.11) into (8.10) and rearranging, it is seen that: 
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 For this to be true, the following equation must be satisfied for the integral above 

to be zero: 
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This is obviously the governing equation for the bending of a beam under a

lateral load. So, it is seen that if one considers a beam-type structure, uses beam

assumptions, and uses proper stress-strain relations and strain-displacement relations, the

result is the beam bending equation. However, it can be emphasized that if a

nonclassical-shaped elastic structure were being analyzed, by using physical intuition, 

experience or some other reasoning to formulate stress-strain relations, and strain-

displacement relations for the body, then through the Theorem of Minimum Potential

Energy one can formulate the governing differential equations for the structure and load 
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analogous to Equation (8.13).  Incidentally, the resulting governing differential equations

derived from the Theorem of Minimum Potential Energy are called the Euler-Lagrange

equations.

 Note also for Equation (8.12) to be true, each of the first two terms must be zero. 

Hence, at x = 0 and x = L (at each end) either Mxw x or 0dxx/dEI 22  must 

be specified (that is, its variation must be zero), also either wVxw xVV or 0dxx/dEI 33

must be specified.  These are the natural boundary conditions.  All of the classical 

boundary conditions, including simple supported, clamped and free edges are contained 

in the above “natural boundary conditions.”  This is a nice byproduct from using the

variational approach for deriving governing equations for analyzing any elastic structure.

The above discussion shows that if in using The Theorem of Minimum Potential

Energy one makes all of the assumptions of classical beam theory, the resulting Euler-

Lagrange equation is the classical beam equation (8.13) and the natural boundary

conditions given in (8.12) as discussed above.

Equally or more important the Theorem of Minimum Potential Energy provides a

means to obtain an approximate solution to practical engineering problems by assuming

good deflection functions which satisfy the boundary conditions.  As the simplest 

example consider a beam simply supported at each end subjected to a uniform lateral

load per unit length 0)( qxq , a constant.

Here, an example, assume a deflection which satisfies the boundary conditions

for a beam simply supported at each end, where A is a constant to be determined. 

L

x
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This is not the exact solution, but should lead to a good approximation because (8.14) is

a continuous single valued function which satisfies the boundary conditions of the

problem.

Proceeding,
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Substituting (8.14) into (8.9) results in 
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The exact solution is 
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 The difference is seen to be 0.386%.  So the Minimum Potential Energy solution 

is seen to be almost exact in determining the maximum deflection. 

 In determining maximum stresses the accuracy of the energy solution is less, 

because bending stresses are proportional to second derivatives of deflection.  By taking 

derivatives the errors increase (conversely, integrating is an averaging process and errors 

decrease) so the stresses from the approximate solution differ more from the exact 

solution than do the deflections. 

 To continue this example for a one lamina composite beam, simply supported at 

each end, subjected to a constant uniform lateral load per unit length of 0q , it is clear 

that the maximum stress occurs at x = L/2.  From classical beam theory, the exact value

of the maximum stress is 
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Likewise, for the Minimum Potential Energy solution, using (8.15) 
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The difference between the two is 3.2%, so the energy solution is quite accurate for many

applications.

 If one wishes to increase the accuracy, instead of using (8.14) one could use 

N
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If N were chosen to be three, for example, the expression for N w(x(( ) is given by
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xx3
sin3 and one would proceed as before, taking

variations with respect to 1A , 2A and 3A  which provides three algebraic equations for 

determining the three nA . Of course as N increases, the accuracy of the solution N

increases until as N approaches infinity it is another form of the exact solution.N

As a second example, examine the same beam, this time subjected to a 

concentrated load P at the mid-length, P x = L/2.  To obtain an exact solution, one must 

divide the beam into two parts, so that the load discontinuity can be accommodated, with

the result that there are two fourth order differential equations and eight boundary

conditions.  Not so with the case of Minimum Potential Energy to obtain an approximate

solution, as follows.  Again assume (8.14) as the approximate deflection because it is

single valued, continuous and satisfies the boundary conditions at the end of the beam.  

There,
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Again, instead of (8.14) one could have chosen (8.21) as the trial function to use in 

solving this problem.

 Thus, the Theorem of Minimum Potential Energy can be used easily for 

complicated laterally distributed loads, concentrated lateral loads, any boundary 
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conditions, and/or variable or discontinuous beam thicknesses.  One only needs to select 

a form of the lateral displacement such as the following examples. 

Clamped Clamped Beam

L

x
Axw

xx2
cos1)(                                           (8.22) 

Clamped-Simple Beam

433 23L3)( xLxxAxw                                    (8.23)

Cantilevered Beam

2)( Axxw                                                     (8.24) 

8.4  The Buckling of Columns

 In this case the strain energy is again given by Equation (8.8), where neglecting 

body forces iFi , the work done by surface tractions is given as follows: 
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 This equation incorporates the more comprehensive theory employed in Chapter 

6 to include buckling, and as discussed previously, to calculate buckling loads, 00 ,

because at incipient buckling the arc length of the buckled column is equal to the original 

length.  Also, in the above, P is the tensile load, considered constant to make the problemP

linear.  Therefore, for column buckling, 
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 Taking the variation of the potential energy, one obtains the following Euler-

Lagrange equation analogous to Equation (8.13)
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as well as the natural boundary conditions discussed previously.  However, assuming a 

form of w(x(( ), which satisfies the boundary conditions for the column, which

approximates the exact buckled shape will provide an approximation to the exact 

buckling load.

Consider a column simply supported at each end, if one uses (8.14) in (8.25) and 

takes variation of A, the result is:

2
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It is seen that this is the exact buckling load, because the exact buckling mode 

(8.14) was utilized.  Some other approximate displacement functions satisfying the 

boundary conditions would give an approximate buckling load.  It can be proven that 

such an approximate buckling load will always be greater than the exact buckling load.  

However, as long as the assumed displacement satisfies the boundary conditions, the 

error is never more than a very few percent of the exact value. 

8.5  Vibration of Beams 

 The energy principle to utilize in dynamic analysis is Hamilton’s Principle which 

employs the functional 

2
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Hamilton’s Principle states that in a conservative system 

0I . (8.29)

In the above, the potential energy, V, is given by Equation (8.1), and VV T is theT

kinetic energy of the body.  In a beam undergoing flexural vibration, the kinetic energy 

would be 
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where m  is the mass density of the material, A is the beam cross-sectional area, and 

tw is the velocity of the beam.

Using Hamilton’s Principle in the same way that was done before for Minimum 

Potential Energy, the resulting Euler-Lagrange equation is 
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which is identical to Equation (7.3).  Also resulting are the natural boundary conditions,

discussed previously. 

 Considering a beam simply supported at each end, if Equation (8.14) is modified 

to include a harmonic motion with time, such as 

t
L
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where C is a constant.C

The result is an Euler-Lagrange equation of 
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which is the exact solution for the natural circular frequency, n , in radians/unit time 

[see Equation (7.6)] because the exact mode shape was assumed.  Again, if the assumed 

displacement function is approximate, then approximate natural frequencies will be

obtained; are higher than the exact frequencies, but the error will be at most a few

percent.  In any case the natural frequency, f (in Hz), is found byf 2n .

 Note that in assuming mode shape functions in both buckling and vibration

problems (eigenvalue problems), the closer the assumed approximate function is to the 

exact mode shape, the lower the resulting eigenvalue will be, and of course it will be 

closer to the exact eigenvalue, since the exact eigenvalue is always lower than any

approximated value. 
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8.6  Minimum Potential Energy for Rectangular Isotropic Plates

 The strain energy density function, W, for a three dimensional solid in rectangular WW

coordinates is given by Equation (8.4).  The assumptions associated with the classical 

plate theory of Chapter 2 are employed to modify (8.4) for a rectangular plate.  If 

transverse shear deformation is neglected, then 0yzxz .  If there is no plate 

thickening, then 0z .  From Equations (1.9), (1.10), and (1.12), stresses are written in

terms of strains, such that for the classical plate, 
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Therefore, (8.4) becomes

2

22 )1(
)(

)1(2
)(

)1(2
xyxy

y

yx
x EEE

W .  (8.34)

If the plate is subjected to bending and stretching, the deflection functions are given by 

Equations (2.24) through (2.28).  Substituting these into (8.34) results in the following: 
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 From this the strain energy )d(
R

RddWddU is found.
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It is seen that the first term is the extensional or in-plane strain energy of the

plate, and the second is the bending strain energy of the plate.  In the latter, it is seen that 

the first term is proportional to the square of the average plate curvature, while the

second term is known as the Gaussian curvature.
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 For the plate the total work term due to surface traction is seen to be
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Hence, in (8.36) and (8.37) if one considers a plate subjected only to a lateral load 

p(x(( , y), one assumes 000 xyyx NNNvu .  If one is considering in-plane loads 

only (except for buckling) assume w(x(( , y) = p(x(( , y) = 0.  If one is looking for buckling 

loads, assume 0)( 00yp .  The rationale for all of this has been discussed 

previously.

8.7  The Buckling of an Isotropic Plate Under a Uniaxial Load, Simply Supported 

      on Three Sides, and Free on an Unloaded Edge 

The most beneficial use of the Minimum Potential Energy Theorem occurs when 

one cannot formulate a suitable set of governing differential equations, and/or when one 

cannot ascertain a consistent set of boundary conditions.  In that case one can make a

reasonable assumption of the displacements, and then solves for an approximate solution 

using the Theorem of Minimum Potential Energy.  This is illustrated in the following 

example.

Consider the plate shown below in Figure 8.2.  The governing differential 

equation for this problem is obtained from Equation (6.7). 
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To solve for the buckling load directly, a Levy type solution may be assumed:
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Substituting (8.39) into (8.38) results in the following ordinary differential

equation to solve: 
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Figure 8.2.  Plate studied in Section 8.7.
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The boundary conditions on the y = 0 and b edges are 

0)0(0)0,(xw

0)0(0)0,(xM y

0)()(0),( 2 bbbxM my m

2 (8.42)

.0)()2()(0),( 3 bbbxV mm

3

It is clear that the first two boundary conditions require that A = C = 0.  SatisfyingC

the other two boundary conditions results in the following relationship for the 

eigenvalues (i.e., the buckling load xx NxN ).

.0][ tan][ tanh 222222

mm bb 22  (8.43) 

Thus, knowing the plate geometry and the material properties, one can solve for 

the buckling loads for each value of m.  It can be shown that the minimum buckling load 

will occur for m = 1, thus a one-half sine wave in the longitudinal direction.  However,

note the complexity both in obtaining Equation (8.43), and then using that equation to

obtain the buckling load, compared to the relative simplicity of Section 6.4 for solving 

the simpler problem of the plate completely simple supported on all four edges.  The 

solutions of this problem have been catalogued in Reference 6.1 and are given below: 
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 For 25.0

a/b 0.50 1.0 2.0 3.0 4.0 5.0 

k 4.40 1.44 0.698 0.564 0.516 0.506k

Now to solve the same problem using Minimum Potential Energy.  However, 

before doing so a brief discussion regarding boundary conditions is in order.  They can 

be divided into two categories: geometric and stress.  Geometric boundary conditions 

involve specifications on the displacement function and the first derivative, such as 

specifying the lateral displacement w or the slope at the boundary, xw xx  or yw yy ,

stress boundary conditions involve the specifications of the second and third derivative 

of the displacement function, such as the stress couples, ,,, xyyx MMM or the transverse

shear resultants ,, yx QQ or the effective transverse shear resultants ,V, yVxVx  discussed in 

Chapter 2. 

In using the Minimum Potential Energy Theorem, one must choose a deflection 

function that at least satisfies the geometric boundary conditions specified on thet

boundaries.  This suitable function will give a reasonable approximate solution.  Better 

yet, by assuming a deflection function that satisfies all specified boundary conditions, 
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one can achieve a very good approximate solution.  If one could choose a deflection 

function that satisfies all boundary conditions and the governing differential equation for 

the problem also, that is the exact solution!  Finally, if one chose a deflection function

that did not satisfy even the geometric boundary conditions, the solution would be

inaccurate because in effect the solution would not be for the problem to be solved, but 

for some other problem for which the assumed deflection does satisfy the geometric

boundary conditions.

In this example, the following function is assumed for the lateral deflection:

a

x
Ayyxw

xx
sin),( (8.44)

 This satisfies all boundary conditions on the x = 0, a edges.  It satisfies the 

geometric boundary condition that w(x(( ,0) = 0, but does not satisfy the stress boundary 

conditions that M(MM x(( ,0) = M(MM x(( ,b) = V(VV x(( ,b) = 0.  Substituting Equation (8.44) and its 

derivatives into Equations (8.1) using (8.36) and (8.37), where of course 

0),( yxpNN xyy  produces 
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  (8.45)

Integrating Equation (8.45) gives 

.
3

)1(2
3

32
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23
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b
AN

a

bb

a
DAV x

Setting 0V , where the only variable with which to take a variation is A, produces the

requirement that 

.
)1(6

22

2

b

D

a

D
N x (8.46)

 To compare this approximate result with the exact solution shown previously, let 

a/b = 1, and 25.0 .  From Equation (8.46) 

.456.1
2

2

cr b

D
N x (8.47)
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In the exact solution, the coefficient is 1.440.  Hence, the difference between the

approximate solution and the exact solution is approximately 1%, yet the three stress

boundary conditions on the y = constant edges were not satisfied.

8.8  Functions for Displacements in Using Minimum Potential Energy for Solving

       Beam, Column, and Plate Problems

 In the use of Minimum Potential Energy methods to solve beam, column, and 

plate problems, one usually needs to assume an expression for the lateral deflection w(x(( )

for the beam or column, and w(x(( , y) for the plate.  These must be single valued,

continuous functions that satisfy all the boundary conditions, or at least the geometric

ones.  Below are a few functions useful in the solutions of beam and column problems.

Simple-simple

1

sin)(
n

n
L

xn
Axw

xx
(8.48)

Simple-free

  w(x(( ) = Ax (8.49)

Clamped-clamped

a

xm
Axw

xx2
cos1)( (8.50)

Clamped-free

   w(x(( ) = Ax2
(8.51)

Clamped-simple

    ])( 433 (8.52)

Free-free

   w = A. (8.53)

In the case of a plate with varied boundary conditions, let w(x(( , y) = f(ff x(( )g(x(( ) where for f(ff x(( )

and g(y(( ) use the appropriate beam functions above.  For example, consider a plate

clamped on edges y = 0 and y = b, and clamped at x = 0 and simply supported at x = a.

Assume the function:
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.
2

cos1]23[),( 433

b

ym
xLxxLAyxw m

yy
(8.54)

 Keep in mind none of the above functions are unique, and thus the engineer may

use his ingenuity to conceive functions best for the solution of that particular problem.  

For instance, suppose a plate had one edge simply supported at y = 0, 2/0 ax , and 

clamped from axa 2/ .  No analytical solution could be obtained but an approximate

solution using energy methods is always attainable. 

 Perhaps the most complete and useful tabulation of functions, their derivatives 

and their integrals, to use in energy methods are those of Warburton [8.3] and Young and 

Felgar [3.1, 3.2].
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8.10  Problems

8.1. Consider a steel plate )psi000,30,25.0psi,1030( 6

yE used as a 

portion of a bulkhead on a ship.  The bulkhead is 06  long and 03  wide 

subjected to an in-plane compressive load in the longer direction.  What thickness

must the plate be to have a buckling stress equal to the yield stress if:

(a) the plate is simply supported on all four edges?

(b) the plate is simply supported on three edges and free on one unloaded edge?

8.2. Given a column of width b, height h, and length L, simply supported at each end,

use the principle of Minimum Potential Energy to determine the buckling load, if 

one assumes the deflection to be

 (a) )()( xL
L

x
Axw

 (b) ]2[)( 343

3
xLxLx

L

A
xw

where in each case A is an amplitude. 

Do the deflections assumed above satisfy the geometric boundary conditions?  Do

they satisfy the stress boundary conditions? 

8.3. Consider the plates below, each subjected to a uniform axial compressive load per 

inch of width, (lbs./in.)xx NN in the x direction.  Determine a suitable
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deflection function w(x(( , y) for each case for subsequent use in the Principle of 

Minimum Potential Energy to determine the critical load xN .

8.4. For an end plate in a support structure with the following boundary conditions,

use the Principle of Minimum Potential Energy to determine the buckling load, if 

one assumes the deflection function to be )]/2(cos1[ axAw xx , where A is the

unknown amplitude. 

8.5. Consider a rectangular plate of ax0 , by0 , 2/2/ hzh .  If the 

lateral deflection w(x(( , y) is assumed to be in a separable form )()( ygxfw , and 

if w = 0 on all boundaries, determine the amount of strain energy due to the terms

comprising the Gaussian curvature.  See (8.36).

8.6. The base of a missile launch platform consists in part of vertical rectangular 

plates of height a, and width b, where ba .  They are tied into the foundation 

below and the platform above such that those edges are considered clamped. 
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However, on their vertical edges they are tied into I-beams, such that those edges

can only be considered simply supported.  Using the Theory of Minimum

Potential Energy, derive the equation for the buckling load per inch of edge

distance,
crxN , for these plates, using a suitable deflection function, so that the 

plates can be designed to resist buckling. 

8.7. An alternative to the design of Problem 8.6 would be to ‘beef up’ the vertical

support beams such that the plate members can be considered to have their 

vertical edges clamped.  Thus the plates have all four edges clamped.  Employing 

a suitable deflection function, use the Theorem of Minimum Potential Energy to

determine an expression for the critical buckling load per unit edge distance,

crxN , to use in designing the plates.  Is the plate with all edges clamped thicker or 

thinner than the one with the sides simply supported in Problem 8.6, to have the

same buckling load?

8.8. The legs of a water tower consist of three columns of length a, constant flexural

stiffness EI, simply supported at one end and clamped at the other end.  Using theII

Theorem of Minimum Potential Energy, and a suitable function for the lateral

deflection, calculate the buckling load crPc for each leg, in order that they may be

properly designed.

8.9. Consider a beam of length L, and constant cross-section, i.e., EI is a constant. I

The beam is subjected to a load q(x(( ) = a + c(x(( /L// ), (lbs./in.) applied laterally where 

a and c are constants.  The beam is simply supported on both ends.  Using

Minimum Potential Energy, and assuming )/(sin)( LxBxw ( xx , determine the 

maximum deflection, w, and the maximum bending stress, x .  Consider the 

beam to be of unit width, i.e., b = 1. 

8.10. A beam of length L, and constant cross-section (EI( = constant) is subjected to aI

lateral load Lxqxq /)()( 0 , where 0q is a constant, and is simply supported at 

each end.  Using Minimum Potential Energy, and assuming )/(sin)( LxAxw ( xx ,

where A is a constant to be determined, determine the maximum deflection, w,

and the maximum stress, x , in the beam.

8.11. Consider the beam of Section 8.3 to be simply supported at each end and 

subjected to a uniform lateral load 0q  (lbs./in.).  Assuming the deflection to be 

)/(sin)( LxAxw ( xx , use the Principle of Minimum Potential Energy to

determine A.

8.12. Consider a beam-column simply supported at one end and clamped at the other. 

Using the Theorem of Minimum Potential Energy, and assuming an admissible

form for the lateral deflection, w(x(( ), calculate the in-plane load, crPc (lbs.), to

buckle the column.

8.13. Consider a beam of stiffness EI, lengthII L, width b, height h, simply supported at 

each end, subjected to a uniform lateral load, 0q  (lbs./in.).  Use Minimum 

Potential Energy, employing a deflection function 

N

n

n
L

xn
Axw

1

sin)(
xx
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 where N = 3, to determine the maximum deflection and maximum stress. N

Compare the answer with the exact solution. 

8.14. Consider a column of length L, clamped at one end and simply supported at the

other end.  Using a buckling mode shape of 

]23[)( 433 xLxxLAxw

 where A is the buckle amplitude.  Use Minimum Potential Energy to determine

the axial critical buckling load, crPc .

8.15. Consider a beam of constant flexural stiffness EI, of lengthII L, clamped at each

end.  Using Hamilton’s Principle, and an assumed deflection of 

tLxAtxw nxx sin)]/2(cos1[),( ,

 determine the fundamental natural frequency, and compare it with the exact 

solution.




